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NOTA  CIENTÍFICA

AAAAA B S T R A C TB S T R A C TB S T R A C TB S T R A C TB S T R A C T

Fivefold symmetry is important in many scientific areas. In particular, five-part units or pentamerism is a basic pattern in
the design of many animals and plants. Despite some efforts, a definite explanation of the abundance of this pentamerism
is still missing. In this note we use sea urchins as working examples to propose some ideas, based on spatial efficiency
arguments and the concept of modular systems, which can give clues to understand the advantages of a pentameral body
plan partition in biological systems.
Key Words:  Modularity, pentamerism, sea urchins.

RRRRR E S U M E NE S U M E NE S U M E NE S U M E NE S U M E N

La simetría pentagonal resulta de importancia en muchas áreas de la ciencia. En particular, es conocido que un patrón básico
en el diseño de muchos animales y plantas es pentámero, en el sentido de que se compone de cinco partes. A pesar de
varios esfuerzos orientados a explicar este hecho, no existe una explicación definitiva para la abundancia del pentamerismo
en la naturaleza. En esta nota usamos a los erizos de mar como ejemplos de trabajo para proponer algunas ideas, basadas
en la partición eficiente del espacio y el concepto de sistema modular, que pueden ofrecer claves para entender las ventajas
de una partición pentámera del plan corporal en sistemas biológicos.
Palabras Clave: Modularidad, pentamerismo, erizos de mar.

OOOOO
ne of the most puzzling properties in many biological
systems is the pentagonal symmetry. There are many
notable examples of pentagonal symmetry in the
members of the phylum Echinodermata, radiolarians,

flowering plants and some fruits. In many cases radial symmetry
is displayed but in some others it only remains a bilateral
symmetry but the body is still divided into five parts, one of these
parts lying along the mirror axis. These five-part units are
common in both animal and plant design. We shall refer to both
cases as pentamerism or pentameral symmetry. Despite of this
abundance, there are few comments on pentamerism, with some
important exceptions1,2. In a pioneering work, Breder1 shows that
pentagonal symmetry is the basic pattern of flowers, dicotyledons,
echinoderms, the vertebrate body section, the distal ends of
tetrapod limbs, and of the oral armature of priapulids. Breeder
concludes “Five-partness, where it appears, is held to with great
rigidity, even when extensive evolutionary change has taken

place. This does not seem to be the case to such a marked extent
where other symmetries are concerned, as the coelenterates
witness”.

The reasons for the success of pentamerism, where it appears,
are not yet understood. It is in sea urchins (Figure 1a) where more
hypotheses have been formulated, either on the origin of
pentamerism (see Ref. 3 and references therein) or its robustness,
based on mechanical or functional models4. If these hypotheses
are true, however, they do not explain the occurrence and
robustness of pentamerism in all other organisms. Breeder1

suggested that the origin of the stability of the pentamerism lies
in the geometrical properties of the pentagon. López-Sauceda &
Aragón5 suggested that in fact a geometrical property, the
regularity, may be the reason for selecting certain symmetries but
even it was no clear why the pentagonal symmetry is preferred
in sea urchins. In this note, we retake this problem by using the
concept of modular systems.

Some biological systems are characterized by properties that can
be explained in terms of the relationships between entities inside
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of these organisms through their evolution. Rare deviations of
regularity were measured in Holasteroida order, which seems to
constitute a critical evolutive event in sea urchins evolution5. All
these results provide strong evidence that the regularity of the
five-vector stars associated with the studied samples was favored
through evolution but no clues about the advantages of stars
with five, instead of say six or four, vectors were available. Steps
further were taken by López-Sauceda12, who performed a numerical
experiment, generating random bilateral stars with three, four,
five, etc., vectors; the main idea was to determine if a star with
a given number of vectors (hopefully five) could have more
probability to be eutactic if its coordinates were chosen randomly,
maintaining bilaterality. A statistical analysis of the obtained
results yielded that stars with seven and eight vectors have more
probability to be regular. If we just take into account the more
frequently observed symmetries in Nature, those stars with four,
five and six vectors have more probability to be regular if they
are randomly generated, with a slight preference for pentagonal
stars12. The biological advantage of pentamerism, however,
does not arise from these results and, even more, there was
observed a tendency to prefer stars with seven and eight
vectors. In order to pursue in this research, an approach based
on modularity is now adopted. The main hypothesis is that
regular (eutactic) pentagonal stars yield more homogeneous
partitions of space.

A first step to verify the hypothesis was to define our modules
that in this case are obtained by the following geometrical
procedure (see Figure 2):

1.       A random star S  of N vectors, {u
1
, u

2
,…, u

N
}, is generated

inside a circle of radius R.

2.    In the same circle, a set of P  of randomly generated points
is inscribed with the restriction that no two points of P +S  are
closer that a certain distance r.

3.  The Voronoi tessellation13 associated with the set of points
P +S  is calculated.

4.    The Voronoi tessellation obtained in the previous step is
partitioned as follows. Given a vertex u

i
 of the star S, the set

of Voronoi polygons that are closer to u
i
 than to any other

vertex u
j
 (j≠i) are selected; this process is repeated for each

vertex u
i
 (i=1,2,…,N). Thus, the Voronoi tessellation is

partitioned into N sub-tessellations or modules L
1
, L

2
, …, L

N
.

Let A
i
 be the total area of the Voronoi polygons associate with

the module L
i
. Our main goal will now be to study the variation

of total areas between modules L
i
, i=1,2,..,N, for partitions

associated with regular and irregular stars; the larger variation,
the less homogeneous the partition of the space is. In order to
support the statistics, for each star S , generated at step 1, M sets
of random points, P

 1
, P

2
, …, P

 M
, are generated and for each set,

steps 2, 3 and 4, of the above procedure, are applied. Now, for a

Figure 1. (a) Skeleton of a Figure 1. (a) Skeleton of a Figure 1. (a) Skeleton of a Figure 1. (a) Skeleton of a Figure 1. (a) Skeleton of a laganum depressumlaganum depressumlaganum depressumlaganum depressumlaganum depressum sea urchin. (b) sea urchin. (b) sea urchin. (b) sea urchin. (b) sea urchin. (b)
Star of five vectors.Star of five vectors.Star of five vectors.Star of five vectors.Star of five vectors.

the system. It is assumed that organisms are composed by
individual entities or modules and knowledge of modules and
their integration is important to understand some properties of
these organisms. The analysis of abstract entities into constituent
elements, and their degrees of interaction among internal parts,
represents a source of important information in terms of
constrictions and evolvability. This approach is called modularity.
This concept might be seen as a tool to infer features of the way
organisms are build, for instance due to organizational principles
of self-maintaining systems6, or it may be an “evolved property”7.
The identification of structural and architectural modules is
often a straightforward matter8, for instance, Eble9 points out
“the parts and characters routinely identified by the morphologist
reflect hypotheses of modularity based on observational or
quantitative criteria, without reference to the generative
mechanisms or the theoretical contexts to which modules relate”.
One of the most basic levels, which conforms phenotipic features
in animal evolution, is the body plan. Sea urchins have a
pentameral readily visible body plan, with either radial and/or
bilateral symmetry (Figure 1a); such a partition defines an
architectural space with some degree of interaction between
parts. Our aim is the analysis of pentameral body plan partitioning
in order to understand not just the biological description of
visible modules and their interactions, but to establish a plausible
hypothesis in terms of spatial efficiency.

Measurements of regularity in a sample of living and extant sea
urchins were carried out in López-Sauceda & Aragón5 by
associating a set of five vectors, called a star (Figure 1b), to the
five ocular plates in the apical disk; the regularity was associated
with the eutaciticy of the star. A given star of vectors {u

1
, u

2
,…,

u
N
} is said to be eutactic if it can be obtained by projecting an

orthogonal set of N vectors {U
1
, U

2
,…, U

N
} in a N-dimensional

space10. That is, if P is an orthogonal projector then the star is
eutatic provided that P(U

i
)=u

i
, for i=1,2,…,N. From this definition,

a measure of regularity can be proposed11 and it was used to
measure the regularity of the studied sea urchins. The analysis
suggested a high degree of regularity (eutacticity) in the shape
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corresponding to regular and irregular stars. From ANOVA
(Figure 3) it can be observed that the variability in modules
coming from partitions generated by irregular stars is
considerably larger. This statistical difference is more
noticeably when all modules from regular and irregular
partitions are compared (Figure 3). Thus, the null hypothesis
is rejected in 23 of 25 modules studied and, consequently,
the area variability of modules obtained from regular stars
is different than those obtained from irregular stars. Even
more, regular stars yield modules with lower variability
than modules coming from irregular stars. It should be
pointed out that our experiment fails in the cases of
modules L

1
 in partitions with 3 modules and L

4
 in partitions

with 4 modules. In both cases, no statistically significant
differences between partitions coming from regular and
irregular stars were observed.

In the theory of modules the “interaction”, in the sense of
efficiency, and “interference”, in the sense of inefficiency,
are useful concepts. Interaction can be interpreted as
physical contiguity of modules but interference, which
also needs continuity, implies territory invasion between
modules. The larger variability of size (or area) the more
interference between contiguous modules. Paradoxically,

Figure 2. Graphical algorithm used to associate modules to a givenFigure 2. Graphical algorithm used to associate modules to a givenFigure 2. Graphical algorithm used to associate modules to a givenFigure 2. Graphical algorithm used to associate modules to a givenFigure 2. Graphical algorithm used to associate modules to a given
vector star. Subfigures (a), (b), (c) and (d) corresponds to steps 1, 2,vector star. Subfigures (a), (b), (c) and (d) corresponds to steps 1, 2,vector star. Subfigures (a), (b), (c) and (d) corresponds to steps 1, 2,vector star. Subfigures (a), (b), (c) and (d) corresponds to steps 1, 2,vector star. Subfigures (a), (b), (c) and (d) corresponds to steps 1, 2,
3 and 4, respectively, of the procedure described in the main text.3 and 4, respectively, of the procedure described in the main text.3 and 4, respectively, of the procedure described in the main text.3 and 4, respectively, of the procedure described in the main text.3 and 4, respectively, of the procedure described in the main text.

given N (the number of vectors of the star) we generate E random
regular stars, S  

1
, S  

2
, …, S  

E
, and the same number of irregular

stars and the procedure already described is applied for each
case. Therefore, let A

mj
  the total area of the module L

m
 of the star

S  
e
, corresponding to the set of random points P

 j
. The mean area

of the module L
m
 is then

and the standard deviation of the E mean areas corresponding
to the Module L

m
 is

With all this, the null hypothesis is that the standard deviation
corresponding to regular star is the same that the standard
deviation resulting from irregular stars. Stars with N=3, 4, 5, 6
and 7 vertices were considered and in all cases sets P

 i 
with 300

pseudo-random points, with normal distribution, were generated.
Other parameter values were E=100, M=100, R=3 and r=0.5.
To avoid non-representative data, during the calculation of
Voronoi tessellations, polygons with al least one vertex outside
the convex hull were removed.

Since the standard deviation  σσσσσ
m
  provides estimation of the area

variability of module L
m
, we performed an ANOVA to detect

statistically significant differences on area variability of modules

interference between modules is also required to exchange
biological information; excessive interference, however,
produces disorganization. With these ideas, we can retake the
discussion about possible biological advantages of pentagonal
arrangements. Modules with a high degree of independence
have low possibilities to interact with its neighbors and, given
its high organization (low variability), the resulting modular
structure tends to be rigid, with low potential to change or, in
biological terms, with low evolvability14.

Notice that from our results, it turns out that if the mean of σσσσσ
m
 ,

denoted by  σσσσσ
m
, provides information about the variability of the

area variability of modules, then the standard deviation of σσσσσ
m

contains the information about the interaction between modules.
By calculating this standard deviation (error bars in Figure 3), we
get that structures with irregular modules have large values, thus
implying large interference between modules. On the contrary,
structures with regular modules have small values of standard
deviations thus small interference between modules is measured.
Finally, structures with five modules have intermediate values so
neither large nor small interference between modules is assumed.
These results are depicted in Figure 4 and can be interpreted as
follows. Structures with three, four and six modules display
excessive interference, thus disorganization. Arrangements with
high degree of organization (eutacticity) such as those with
seven modules have almost no interference so they are more
rigid. Structures with five modules have a high degree of
organization (eutacticity) and, at the same time, they show an
adequate equilibrium between interference and rigidity, that can
be interpreted as transformational potential. Consequently,
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Figure 3. ANOVA of differences of area variability (mean of Figure 3. ANOVA of differences of area variability (mean of Figure 3. ANOVA of differences of area variability (mean of Figure 3. ANOVA of differences of area variability (mean of Figure 3. ANOVA of differences of area variability (mean of σσσσσ
mmmmm
) for regular and irregular partitions of the space. Partitions with) for regular and irregular partitions of the space. Partitions with) for regular and irregular partitions of the space. Partitions with) for regular and irregular partitions of the space. Partitions with) for regular and irregular partitions of the space. Partitions with

(a) Three modules (*: P = 0.0001), (b) Four modules (*: P = 0.001), (c) Five modules (*: P = 0.05), (d) Six modules (*: P = 0.01)(a) Three modules (*: P = 0.0001), (b) Four modules (*: P = 0.001), (c) Five modules (*: P = 0.05), (d) Six modules (*: P = 0.01)(a) Three modules (*: P = 0.0001), (b) Four modules (*: P = 0.001), (c) Five modules (*: P = 0.05), (d) Six modules (*: P = 0.01)(a) Three modules (*: P = 0.0001), (b) Four modules (*: P = 0.001), (c) Five modules (*: P = 0.05), (d) Six modules (*: P = 0.01)(a) Three modules (*: P = 0.0001), (b) Four modules (*: P = 0.001), (c) Five modules (*: P = 0.05), (d) Six modules (*: P = 0.01)
and (e) Seven modules (*: P = 0.01).and (e) Seven modules (*: P = 0.01).and (e) Seven modules (*: P = 0.01).and (e) Seven modules (*: P = 0.01).and (e) Seven modules (*: P = 0.01).
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structures with five modules lie in the borderline between rigidity
and disorganization; this particular equilibrium seems to be
necessary to get an optimal balance between organization and
evolvability.

Albeit much more work is needed, our approach seems to point
along a promising direction in order to clarify the advantages of
pentamerism in Nature. It would be interesting to mention the fact
that pentagonal arrangements appear in other realms of science
with the same property of lying in borderlines between ordered
and disordered structures. In materials science, for instance, the
atomic order of quasicrystals (with pentagonal symmetry, among
others) lies between periodic and amorphous15. In the modern
theory of dynamical systems, the transfer to chaos includes a
passage through smalls regions, which are seeds of chaos; in
Hamiltonian systems, these regions are called stochastic webs
and examples with five and seven-fold symmetries have been
found16.
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